Gyroscopic Glove with MPU6080 and Arduino

 











Connections 

SERVO - Arduino Nano

VCC - 5V

GND - GND 

SIGNAL - 9


MPU6080 - Arduino Nano

VCC - 3.3V

SCL - A4

SDA - A5

GND - GND

INT - D2





code:



#include "I2Cdev.h"


#include "MPU6050_6Axis_MotionApps20.h"

//#include "MPU6050.h" // not necessary if using MotionApps include file


// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation

// is used in I2Cdev.h

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

    #include "Wire.h"

#endif


#include <Servo.h>


Servo myservo;  // create servo object to control a servo

 

// class default I2C address is 0x68

// specific I2C addresses may be passed as a parameter here

// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)

// AD0 high = 0x69

MPU6050 mpu;

//MPU6050 mpu(0x69); // <-- use for AD0 high


/* =========================================================================

   NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch

   depends on the MPU-6050's INT pin being connected to the Arduino's

   external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is

   digital I/O pin 2.

 * ========================================================================= */


/* =========================================================================

   NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error

   when using Serial.write(buf, len). The Teapot output uses this method.

   The solution requires a modification to the Arduino USBAPI.h file, which

   is fortunately simple, but annoying. This will be fixed in the next IDE

   release. For more info, see these links:


   http://arduino.cc/forum/index.php/topic,109987.0.html

   http://code.google.com/p/arduino/issues/detail?id=958

 * ========================================================================= */




// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual

// quaternion components in a [w, x, y, z] format (not best for parsing

// on a remote host such as Processing or something though)

//#define OUTPUT_READABLE_QUATERNION


// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles

// (in degrees) calculated from the quaternions coming from the FIFO.

// Note that Euler angles suffer from gimbal lock (for more info, see

// http://en.wikipedia.org/wiki/Gimbal_lock)

//#define OUTPUT_READABLE_EULER


// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/

// pitch/roll angles (in degrees) calculated from the quaternions coming

// from the FIFO. Note this also requires gravity vector calculations.

// Also note that yaw/pitch/roll angles suffer from gimbal lock (for

// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)

#define OUTPUT_READABLE_YAWPITCHROLL


// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration

// components with gravity removed. This acceleration reference frame is

// not compensated for orientation, so +X is always +X according to the

// sensor, just without the effects of gravity. If you want acceleration

// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.

//#define OUTPUT_READABLE_REALACCEL


// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration

// components with gravity removed and adjusted for the world frame of

// reference (yaw is relative to initial orientation, since no magnetometer

// is present in this case). Could be quite handy in some cases.

//#define OUTPUT_READABLE_WORLDACCEL


// uncomment "OUTPUT_TEAPOT" if you want output that matches the

// format used for the InvenSense teapot demo

//#define OUTPUT_TEAPOT




#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards

#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)

#define SERVO_PIN 9 // use pin 9 for servo control

bool blinkState = false;


// MPU control/status vars

bool dmpReady = false;  // set true if DMP init was successful

uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU

uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)

uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)

uint16_t fifoCount;     // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer


// orientation/motion vars

Quaternion q;           // [w, x, y, z]         quaternion container

VectorInt16 aa;         // [x, y, z]            accel sensor measurements

VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements

VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements

VectorFloat gravity;    // [x, y, z]            gravity vector

float euler[3];         // [psi, theta, phi]    Euler angle container

float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector


// packet structure for InvenSense teapot demo

uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };




// ================================================================

// ===               INTERRUPT DETECTION ROUTINE                ===

// ================================================================


volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high

void dmpDataReady() {

    mpuInterrupt = true;

}




// ================================================================

// ===                      INITIAL SETUP                       ===

// ================================================================


void setup() {

    myservo.attach(SERVO_PIN);  

    myservo.write(0);   


     

    // join I2C bus (I2Cdev library doesn't do this automatically)

    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

        Wire.begin();

        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties

    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

        Fastwire::setup(400, true);

    #endif


    // initialize serial communication

    // (115200 chosen because it is required for Teapot Demo output, but it's

    // really up to you depending on your project)

    Serial.begin(115200);

    while (!Serial); // wait for Leonardo enumeration, others continue immediately


    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio

    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to

    // the baud timing being too misaligned with processor ticks. You must use

    // 38400 or slower in these cases, or use some kind of external separate

    // crystal solution for the UART timer.


    // initialize device

    Serial.println(F("Initializing I2C devices..."));

    mpu.initialize();

    pinMode(INTERRUPT_PIN, INPUT);


    // verify connection

    Serial.println(F("Testing device connections..."));

    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));


    // wait for ready

    Serial.println(F("\nSend any character to begin DMP programming and demo: "));

    while (Serial.available() && Serial.read()); // empty buffer

    while (!Serial.available());                 // wait for data

    while (Serial.available() && Serial.read()); // empty buffer again


    // load and configure the DMP

    Serial.println(F("Initializing DMP..."));

    devStatus = mpu.dmpInitialize();


    // supply your own gyro offsets here, scaled for min sensitivity

    mpu.setXGyroOffset(220);

    mpu.setYGyroOffset(76);

    mpu.setZGyroOffset(-85);

    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip


    // make sure it worked (returns 0 if so)

    if (devStatus == 0) {

        // turn on the DMP, now that it's ready

        Serial.println(F("Enabling DMP..."));

        mpu.setDMPEnabled(true);


        // enable Arduino interrupt detection

        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));

        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);

        mpuIntStatus = mpu.getIntStatus();


        // set our DMP Ready flag so the main loop() function knows it's okay to use it

        Serial.println(F("DMP ready! Waiting for first interrupt..."));

        dmpReady = true;


        // get expected DMP packet size for later comparison

        packetSize = mpu.dmpGetFIFOPacketSize();

    } else {

        // ERROR!

        // 1 = initial memory load failed

        // 2 = DMP configuration updates failed

        // (if it's going to break, usually the code will be 1)

        Serial.print(F("DMP Initialization failed (code "));

        Serial.print(devStatus);

        Serial.println(F(")"));

    }


    // configure LED for output

    pinMode(LED_PIN, OUTPUT);

}




// ================================================================

// ===                    MAIN PROGRAM LOOP                     ===

// ================================================================


void loop() {

    // if programming failed, don't try to do anything

    if (!dmpReady) return;


    // wait for MPU interrupt or extra packet(s) available

    while (!mpuInterrupt && fifoCount < packetSize) {

        // other program behavior stuff here

        // .

        // .

        // .

        // if you are really paranoid you can frequently test in between other

        // stuff to see if mpuInterrupt is true, and if so, "break;" from the

        // while() loop to immediately process the MPU data

        // .

        // .

        // .

    }


    // reset interrupt flag and get INT_STATUS byte

    mpuInterrupt = false;

    mpuIntStatus = mpu.getIntStatus();


    // get current FIFO count

    fifoCount = mpu.getFIFOCount();


    // check for overflow (this should never happen unless our code is too inefficient)

    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {

        // reset so we can continue cleanly

        mpu.resetFIFO();

        Serial.println(F("FIFO overflow!"));


    // otherwise, check for DMP data ready interrupt (this should happen frequently)

    } else if (mpuIntStatus & 0x02) {

        // wait for correct available data length, should be a VERY short wait

        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();


        // read a packet from FIFO

        mpu.getFIFOBytes(fifoBuffer, packetSize);

        

        // track FIFO count here in case there is > 1 packet available

        // (this lets us immediately read more without waiting for an interrupt)

        fifoCount -= packetSize;


        #ifdef OUTPUT_READABLE_QUATERNION

            // display quaternion values in easy matrix form: w x y z

            mpu.dmpGetQuaternion(&q, fifoBuffer);

            Serial.print("quat\t");

            Serial.print(q.w);

            Serial.print("\t");

            Serial.print(q.x);

            Serial.print("\t");

            Serial.print(q.y);

            Serial.print("\t");

            Serial.println(q.z);

        #endif


        #ifdef OUTPUT_READABLE_EULER

            // display Euler angles in degrees

            mpu.dmpGetQuaternion(&q, fifoBuffer);

            mpu.dmpGetEuler(euler, &q);

            Serial.print("euler\t");

            Serial.print(euler[0] * 180/M_PI);

            Serial.print("\t");

            Serial.print(euler[1] * 180/M_PI);

            Serial.print("\t");

            Serial.println(euler[2] * 180/M_PI);

        #endif


        #ifdef OUTPUT_READABLE_YAWPITCHROLL

            // display Euler angles in degrees

            mpu.dmpGetQuaternion(&q, fifoBuffer);

            mpu.dmpGetGravity(&gravity, &q);

            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

            Serial.print("ypr\t");

            Serial.print(ypr[0] * 180/M_PI);

            Serial.print("\t");

            Serial.print(ypr[1] * 180/M_PI);

            //Output to servo

            myservo.write(180-(90+ ypr[2] * 180/M_PI));    

            Serial.print("\t");

            Serial.println(ypr[2] * 180/M_PI);

        #endif


        #ifdef OUTPUT_READABLE_REALACCEL

            // display real acceleration, adjusted to remove gravity

            mpu.dmpGetQuaternion(&q, fifoBuffer);

            mpu.dmpGetAccel(&aa, fifoBuffer);

            mpu.dmpGetGravity(&gravity, &q);

            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);

            Serial.print("areal\t");

            Serial.print(aaReal.x);

            Serial.print("\t");

            Serial.print(aaReal.y);

            Serial.print("\t");

            Serial.println(aaReal.z);

        #endif


        #ifdef OUTPUT_READABLE_WORLDACCEL

            // display initial world-frame acceleration, adjusted to remove gravity

            // and rotated based on known orientation from quaternion

            mpu.dmpGetQuaternion(&q, fifoBuffer);

            mpu.dmpGetAccel(&aa, fifoBuffer);

            mpu.dmpGetGravity(&gravity, &q);

            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);

            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);

            Serial.print("aworld\t");

            Serial.print(aaWorld.x);

            Serial.print("\t");

            Serial.print(aaWorld.y);

            Serial.print("\t");

            Serial.println(aaWorld.z);

        #endif

    

        #ifdef OUTPUT_TEAPOT

            // display quaternion values in InvenSense Teapot demo format:

            teapotPacket[2] = fifoBuffer[0];

            teapotPacket[3] = fifoBuffer[1];

            teapotPacket[4] = fifoBuffer[4];

            teapotPacket[5] = fifoBuffer[5];

            teapotPacket[6] = fifoBuffer[8];

            teapotPacket[7] = fifoBuffer[9];

            teapotPacket[8] = fifoBuffer[12];

            teapotPacket[9] = fifoBuffer[13];

            Serial.write(teapotPacket, 14);

            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose

        #endif


        // blink LED to indicate activity

        blinkState = !blinkState;

        digitalWrite(LED_PIN, blinkState);

    }

}

Post a Comment

My Instagram

Made with by Pi-girl | Copyright © 2020 Pi-girl